

# **L**UCL

# MODEL-BASED SCREENING OF COMPOUNDS FOR THE TREATMENT OF CHAGAS DISEASE, A NEGLECTED TROPICAL DISEASE

S. D'Agate<sup>1</sup>, I. Cotillo Torrejon<sup>2</sup>, P. Healy<sup>1</sup>, O. Della Pasqua<sup>1,3</sup>

<sup>1</sup>Clinical Pharmacology & Therapeutics Group, University College London, London, UK

<sup>2</sup>Kinetoplastid Discovery Performance Unit, GlaxoSmithKline, Tres Cantos, Spain

<sup>3</sup>Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Uxbridge, UK

## Chagas Disease



(American trypanosomiasis) people affected worldwide 0000 people die of complications linked to Chagas disease **Estimated number of cases** Status of vector transmission <1 000 Countries without vector transmission available 1 000-99 999 Countries with accidental vector transmission 100 000-999 999 drugs to Countries with ongoing vector transmission Data Source: World Health Organization World Health Organization >=1 000 000 Map Production: Control of Neglected treat Tropical Diseases (NTD) No officially estimated cases World Health Organization



#### Trypanosoma cruzi







#### Chagas Disease







Courtesy of Dr Patricia Paredes, Guadalajara, Jal., Mexico.

## Materials - experimental protocol[1]







1. Alonso-Padilla et al. PLoS neglected tropical diseases 2015; 9: e0003493.

## Aims of the current investigation







## Methods - model development



- Semi-mechanistic model parameterisation, aimed at disentangling drug-specific from system-specific parameters.
- Compartmental model describing protozoa growth and infection processes.
- Sequential PK/PD modelling approach:
  - 1. Control data used for the estimation of system-related parameters,
  - 2. Compound data used for the estimation of drug-related parameters.
- All analyses were carried out in NONMEM V7.3 using first-order conditional estimation with interaction (FOCE-I);
- Goodness of fit assessed by graphical methods, visual predictive check and bootstrap techniques.



## Methods – Protozoa dynamics







#### Visual predictive checks/Protozoa dynamics



| Parameters of interest               | Estimate |
|--------------------------------------|----------|
| Reinfection rate $(h^{-1})$          | 0.0012   |
| Premature host cell lyse $(h^{-1})$  | 0.0046   |
| Initial number of amastigotes/cell   | 3.303    |
| Parasite replication rate $(h^{-1})$ | 0.0716   |





Data from control wells (N<sub>samples</sub>=310) were used in the model building process.

## Aims of the current investigation







#### Methods - final model





Intracellular parasite growth



$$E = 1 - \frac{I_{max} \cdot C(t)}{IC_{50} + C(t)} \cdot D$$
 or  $E = \frac{E_{max} \cdot C(t)}{EC_{50} + C(t)} \cdot D$  and  $D = \frac{t}{T_{delay} + t}$ 

## Drug-specific parameters



$$E = 1 - \frac{I_{max} \cdot C(t)}{IC_{50} + C(t)} \cdot D$$
 or  $E = \frac{E_{max} \cdot C(t)}{EC_{50} + C(t)} \cdot D$  and  $D = \frac{t}{T_{delay} + t}$ 

- IC<sub>50K1</sub> inhibitory effect on the parasite replication rate
- $EC_{50KD}$   $\Longrightarrow$  direct effect on the death rate of the parasite
- IC<sub>50KIN</sub> inhibitory effect on the host cells growth rate
- IC<sub>50KOUT</sub> inhibitory effect on the premature lysis of host cells



## Compound analysis



- Screening data:
  - 2 reference drugs (benznidazole, nifurtimox);
  - 44 new compounds

- Experimental protocol:
  - Exposure-response curves for each compound include 11 levels, ranging from 0.85 nM to 50 μM.



## Visual predictive checks/Drug effect









 $IC_{50K1} = 4.26 \,\mu\text{M}$  $EC_{50KD} = 14.73 \,\mu\text{M}$ 

 $IC_{50K1} = 1.59 \mu M$  $EC_{50KD} = 13.01 \mu M$ 

## Visual predictive checks/Drug effect









 $IC_{50K1} = 0.93 \, \mu M$ 

## Aims of the current investigation





## Compound ranking



- Sensitivity analysis was performed to identify the most sensitive parameter describing parasiticidal and parasitostatic effects;
- $IC_{50K1}$  represents the drug effect on parasite replication rate (parasitostatic);
- EC<sub>50KD</sub> represents the drug induced increase in parasite clearance (parasiticidal).



## Compound ranking



|               | Compound     | IC <sub>50K1</sub> (μΜ) |
|---------------|--------------|-------------------------|
| $\Rightarrow$ | GW380944A    | 0.037                   |
|               | GSK2249069A  | 0.066                   |
|               | GSK503900A   | 0.071                   |
|               | Posaconazole | 1.26                    |
|               | Nifurtimox   | 1.59                    |
|               | GW368548X    | 1.61                    |
|               | GW866668A    | 1.67                    |
|               | GSK2960477A  | 1.71                    |
|               | GSK1172530A  | 2.16                    |
| $\Rightarrow$ | GW368763X    | 2.63                    |
|               | Benznidazole | 4.26                    |
| $\Rightarrow$ | GSK121884A   | 16.96                   |
| $\Rightarrow$ | GW332909A    | >50                     |
|               |              |                         |





## Aims of the current investigation





#### Dose rationale in humans



- Benznidazole and posaconazole were used to exemplify how model derived parameters can support the dose rationale for first-time-in humans and proof-of-concept studies.
- Target exposure corresponding to >IC80 and >IC90 values were assumed to be required for the therapeutic effect.
- Predicted exposure (plasma concentrations) were derived using allometric scaling principles and/or available pharmacokinetic data[2]. Results were then compared to currently used/tested clinical doses.



#### Target exposure - benznidazole







#### Target exposure - posaconazole







#### Conclusions



- We have shown that model-based approach can be used to describe parasite growth dynamics *in-vitro*;
- The model was parameterised using system and drug-specific parameters, enabling more precise estimates of the parameters of interest ( $IC_{50}$ );
- Most compounds appear to have a predominant parasitostatic, rather than parasiticidal effect, which potentially explains the failure of some compounds in clinical trials;
- Given that target exposure can be derived from model parameters, our approach also allows a more robust dose rationale for proof of concept in Chagas disease.



## Acknowledgements



Tres Cantos Open Lab Foundation



Nadia Terranova



#### References



[1] Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JM, Hlatky L, Hahnfeldt P. Classical mathematical models for description and prediction of experimental tumor growth. PLoS computational biology 2014; 10: e1003800.

[2] Nielsen EI, Friberg LE. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 2013; 65: 1053-90.

[3] Alonso-Padilla, J., et al. (2015). "Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line." PLoS Negl Trop Dis 9(1): e0003493.

[4] Soy, D., et al. (2015). "Population pharmacokinetics of benznidazole in adult patients with Chagas disease." Antimicrob Agents Chemother 59(6): 3342-3349.

[5] N. Terranova, M.B Jiménez-Díaz, I. Angulo-Barturen, P. Magni, O. Della Pasqua. Modelling of protozoa dynamics and drug effects in a murine model of malaria infection. PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe. ISSN 1871-6032. PAGE 21 (2012) Abstr 2574.





# **L**

